Evidence-Based Nutrient Recommendations

Iron Part 2—Research


by Jack Norris, RD

More Information on Iron

See Iron Part 1—Basics for general recommendations about increasing iron absorption. Below is a more detailed discussion about increasing iron absorption, followed by a review of the research on the iron status of vegetarians and a discussion of iron and chronic disease.


Iron Absorption from Plant Foods

Phytates and polyphenols, found in many plant foods, can inhibit the absorption of plant iron, while vitamin C is a strong enhancer of plant iron and can overcome the inhibitors.


Phytates are found in legumes and grains. One study found that various doses of phytate reduced iron absorption by 10–50%. But adding 50 mg of vitamin C counteracted the phytate, and adding 150 mg of vitamin C increased iron absorption to almost 30% (Siegenberg, 1991).

Polyphenols in Coffee and Tea

Polyphenols, which include tannic acid, can inhibit iron absorption and are found in coffee, cocoa, and black, green, and many herbal teas (Hurrell, 1999).

One study showed that, over four weeks, green and black tea lowered iron levels primarily in people with serum ferritin levels less than 20 µg/l (Schlesier, 2012). Drinking tea an hour before or after a meal markedly reduces its effects on iron absorption (Ahmad, 2017Disler, 1975).

However, although short-term studies suggest that tea inhibits iron absorption, adaptation may occur and in apparently healthy adults, tea-drinking does not appear to increase the risk of becoming iron deficient (Mennen, 2007). And in the presence of a large dose of tannic acid, 100 mg of vitamin C increased iron absorption from 2–8% (Siegenberg, 1991).

Our recommendations are that if you normally drink coffee or tea with meals and haven’t had iron deficiency, then there’s no need to change. But for those who have iron deficiency, it’s best to avoid coffee or tea within one hour of most meals.

Curing Anemia in Vegetarians with Vitamin C

In one study, vegetarian children with anemia and low vitamin C intakes in India were given 100 mg of vitamin C at both lunch and dinner for 60 days. They saw a drastic improvement in their anemia, with most making a full recovery (Seshadri, 1985).

In another study, researchers used 500 mg of vitamin C twice daily after meals to increase hemoglobin and serum ferritin in Indian vegetarians. They concluded that vitamin C was more effective at increasing iron status than iron supplements (Sharma, 1995).

Cooking foods in cast iron pans can increase iron consumption. A 2007 study in Brazil showed that cooking tomato sauce in an iron skillet increases the amount of iron in the sauce and also increased iron status among teen-aged and young adult lacto-ovo vegetarians (Quintaes, 2007). The authors considered it important for the food cooked to be both acidic and water-based, such as tomato sauce.

Lysine and Iron Absorption

The amino acid L-lysine plays a part in the absorption of iron and zinc.

Among plant foods, L-lysine is found in high amounts mainly in legumes (peanuts, beans, lentils, and peas) and quinoa, and a vegan who doesn’t eat many legumes could find themselves falling short on lysine.

In some women, iron supplementation does not lead to an increase in iron stores. In one study of such women, adding the amino acid L-lysine (1.5 – 2 g/day for 6 months) to iron supplementation did increase iron stores (Rushton, 2002).

Beta Carotene and Iron Absorption

A handful of studies from Venezuela have found that beta carotene may substantially boost the absorption of iron in the human intestine, especially from iron-rich grains (Garcı́a-Casal, 1998; García-Casal, 2000; Layrisse, 2000). It appears that beta carotene reduces the inhibitory effects that polyphenols and phytates have on iron absorption. Foods that are rich in beta carotene include orange vegetables (i.e. carrots, sweet potatoes, and butternut squash) and leafy greens (i.e. spinach, kale, and romaine).

Ferritin and Iron Absorption

When assessing studies on iron absorption, it’s important to realize that a person’s serum ferritin level is the main determinant of, and inversely proportional to, non-heme iron absorption (Collings, 2013).

Dietary Sulfur Compounds and Iron Absorption

A 2010 in vitro study found that garlic and onions (which are high in sulfur compounds) increased iron absorption from grains, but there wasn’t a way to extrapolate this to humans (Gautam, 2010).

Iron Status of Vegetarians

Just as in the greater population, it’s not unusual for premenopausal vegetarian women and teenage girls to have iron deficiency and sometimes anemia. There’s anecdotal evidence that some premenopausal women who become vegetarian develop iron deficiency and such women should make sure they’re following advice about increasing iron absorption.

The Academy of Nutrition and Dietetics’ Position Paper on Vegetarian Diets says, “Despite having similar iron intakes, the iron stores of vegetarians are typically below those of nonvegetarians…Individuals with low iron status can substantially increase their iron absorption from diets with moderate to high iron bioavailability. The absorption process appears to adapt effectively in the case of Western vegetarians because their hemoglobin values and most other measures of iron status are similar to those values seen in nonvegetarians” (Academy, 2016).

The Academy’s statement is based on cross-sectional studies. The iron status of vegetarians or vegans on self-selected diets hasn’t been followed through time.

Vegetarian and Vegan Iron Intakes

Cross-sectional studies show that average iron intakes of male vegetarians (including lacto-ovo vegetarians and vegans) range from 14–18 mg/day from food and 23 mg/day including supplements (Davey, 2003Haddad, 1999).

Cross-sectional studies show that female vegetarians’ average iron intakes range from 12-15 mg/day from food (Davey, 2003Harvey, 2005Reddy, 1990Worthington-Roberts, 1988), although one study measured it at 20 mg/day from food (Waldmann, 2004) and another at 26 mg/day from food and 42 mg/day from food and supplements (Haddad, 1999).

A cross-sectional analysis of the EPIC-Oxford cohort found that vegans (men and women combined) consumed an average of 18.3 mg/day and vegetarians consumed an average of 16.7 mg/day iron from food (Sobiecki, 2016).

A cross-sectional analysis of the UK Biobank sample (which included 398 vegans and 6,548 vegetarians) found that on average, white British vegans consumed significantly more iron from food than other dietary groups (vegans consumed 16.9 mg/day, vegetarians 14.6 mg/day, fish eaters 14.6 mg/day, chicken eaters 13.9 mg/day, ~13.6 mg/day for other meat-eaters) (Tong, 2019).

A German cross-sectional study of 36 vegans and 36 meat-eaters (18 men and 18 women in each group) found vegans had higher median iron intakes through food (22.0 mg) than meat-eaters (14.0 mg) (Weikert, 2020).

Vegetarian and Vegan Iron Markers

Anemia is defined as hemoglobin < 130 g/L in men and < 120 g/l in women.

In Tong et al. (UK, 2019), white vegan men had significantly lower hemoglobin than other diet groups (144.8, CI 143.2-146.3 g/l), though still in the normal range. The hemoglobin of both premenopausal (131.4, CI 129.1-133.8 g/l) and postmenopausal (134.7, CI 133.2-136.1 g/l) white vegan women didn’t differ from other dietary groups. Serum ferritin wasn’t measured.

In three other studies measuring hemoglobin, two had no female vegetarians with anemia (Reddy, 1990Worthington-Roberts, 1988), while another had 2 out of 15 (Haddad, 1999), and one had 3 out of 75 (Waldmann, 2004).

One of the above studies included Indian, female, lacto-ovo vegetarians living in Britain, of which 15 out of the 19 were iron-deficient and two had anemia (Reddy, 1990).

Average male vegetarian serum ferritin levels range from 30–75 µg/l (Alexander, 1994; Haddad, 1999; Obeid, 2002). In the one study that explicitly stated it, no vegan men were iron deficient or anemic (Haddad, 1999).

Average female vegetarian serum ferritin levels range from 11–35 µg/l (Alexander, 1994; Harvey, 2005; Obeid, 2002; Waldmann, 2004; Worthington-Roberts, 1988).

Despite mean hemoglobin and ferritin levels within the reference range, Weikert et al. reported 4 of 36 vegans (and 3 of 36 meat-eaters) having ferritin and blood count levels that indicated iron deficiency.

White vegetarian women have high rates of iron deficiency ranging from about 25–50%, although omnivore women’s rates of deficiency ranged from 20–60% in those same studies (Haddad, 1999Harvey, 2005Reddy, 1990Waldmann, 2004), possibly suggesting that women with iron deficiency issues are more likely to take part in studies on iron deficiency. Vegan women over 50 had a deficiency rate of only 12% (Waldmann, 2004).

There’s been one prospective study on iron status using a vegetarian diet (Wells, 2003) in which men aged 59–78 were placed on either a lacto-ovo vegetarian or omnivorous diet for 12 weeks during which they also participated in resistance training. After 12 weeks, serum ferritin in the vegetarian group went from 95 to 72 µg/l, while omnivore ferritin levels stayed the same. Other iron parameters stayed about the same, with no change in vegetarian hemoglobin.

Polish Vegetarian Children

A 2013 study from Poland measured iron intakes and iron status of vegetarian children (Gorczyca, 2013). The study compared 22 vegetarian children (5 ate fish, none were vegan) to 18 omnivores, aged 2–18 years old. Of the vegetarians, eight (36%) had iron deficiency compared to only two (11%) of the omnivores.

Of the vegetarian girls of menstruating age, 2 of the 5 had iron deficiency anemia, whereas none of the 4 omnivore menstruating girls had anemia. The researchers noted that their anemia was not due to menstrual period disorders and that they’d been trying to lose weight for “quite a long time.”

It’s likely the iron deficiency in these Polish children was due to not eating enough iron-rich foods.

There’s more information about this study in Iron Status of Polish Vegetarian Children.

Spanish Vegetarian Adults

A 2019 study analyzed the iron status of 49 lacto-ovo vegetarians and 55 vegans in Spain with a mean age of 30 years (Gallego-Narbón, 2019). The prevalence of iron-deficiency anemia was low (5% of the sample, who were all women), although 28% of participants were categorized as iron-depleted and 31% iron-deficient.

While women had lower markers of iron status than men (mainly attributed to menstruation), there were no significant differences in iron status between lacto-ovo vegetarians and vegans. The authors concluded, “nutritional supplements should not be widely recommended to vegetarians, although women with intense menstrual blood losses should apply dietary strategies to improve iron bioavailability, i.e., consume iron absorption enhancers with the main meals, while iron inhibitors separated from the main meals, and regularly check their iron status in order to know if they need an iron supplement.”

The Food and Nutrition Board and Vegetarian Diets

The Food and Nutrition Board (FNB) of the Institute of Medicine sets the Dietary Reference Intakes for nutrients which include the Recommended Dietary Allowance (RDA). The FNB suggests that iron in vegetarian diets is absorbed at a rate of 5-12% compared to 14-18% in omnivorous diets. The FNB does not explicitly give a separate RDA, but says that the “requirement for iron is 1.8 times higher for vegetarians” (NIH, 2019).

The FNB bases their recommendations on two clinical trials:

Hunt and Roughead (Hunt, 1999) performed a crossover study in which participants spent 8 weeks on a typical lacto-ovo vegetarian diet and 8 weeks on an omnivorous diet. Iron absorption on the lacto-ovo vegetarian diet was 1.1% compared to 3.8% on the omnivorous diet.

Cook et al. (Cook, 1991) divided people without anemia into 3 groups:

  • Normal diet
  • Diet with iron absorption enhancers
  • Diet with iron absorption inhibitor

Over the course of two weeks, non-heme iron from meals was absorbed at the respective rates of 7.2%, 13.5%, and 2.5%, whereas the absorption rates for the entire two weeks were 7.4%, 8.0%, and 3.4%.

The authors said that although iron absorption from meals can vary up to 20-fold within the same meal, depending on enhancers and inhibitors, large population surveys have not demonstrated a clear relationship between iron status and daily consumption of such factors.

These two trials shouldn’t be viewed as conclusive as they don’t account for the body adapting its absorption mechanisms over longer periods of time (such as a year or more) or using iron absorption enhancers, especially vitamin C.

Until prospective studies investigate iron levels in free-living vegetarians over a period of years, it’s impossible to know exactly what impact a vegetarian diet might have on iron levels.

Iron Supplements in Early Functional Deficiency

Two studies from Switzerland have shown that iron supplementation can reduce fatigue in premenopausal women (Vaucher, 2012; Verdon, 2003) whose hemoglobin levels are above 120 g/l (and thus not diagnosed with anemia).

The most recent, from 2012 (Vaucher, 2012), was a double-blinded, randomized controlled trial in which 80 mg of ferrous sulfate (an iron supplement) per day for twelve weeks increased hemoglobin in women who had average serum ferritin levels of 22.5 µg/l. This increase in hemoglobin was matched with a 50% reduction in symptoms of fatigue compared to only 19% for placebo. Improvements in hemoglobin were seen after 6 weeks.

Another study showed that cognition in adolescent girls has been improved by iron supplements in those with early functional deficiency (Bruner, 1996).

Iron Deficiency and Manganese

It’s important to resolve iron deficiency because it can increase manganese accumulation in the brain. In iron deficiency, manganese is absorbed instead of iron and vegans, in particular, have high manganese intakes. The good news is that while phytate decreases both iron and manganese absorption, vitamin C increases only iron absorption.

For references and more information, see the VeganHealth article, Manganese.


Hemochromatosis is a genetic disease in which someone absorbs abnormally large amounts of iron, resulting in very high serum ferritin levels of >300 ng/ml in men, 200-300 ng/ml in postmenopausal women, and >200 ng/ml in premenopausal women (CDC, 2013).

Less than 1% of people of northern European descent are homozygous for the hemochromatosis gene. Hemochromatosis typically begins to cause problems, especially for men, around age 40 to 60.

If untreated, hemochromatosis can result in liver cirrhosis, liver cancer, heart failure, and other problems. Symptoms include joint pain, fatigue, abdominal pain, and impotence.

People should talk to their doctors about their risk factors.

Iron and Chronic Disease

Because hemochromatosis can lead to significant health problems, research has looked at whether high iron levels, in the absence of hemochromatosis, might also lead to health problems—this was of particular interest regarding vegetarianism because of the lower iron stores in vegetarians.

Indeed, early research found that high serum ferritin levels were associated with heart disease. But since then, the research has been less convincing. Here’s a summary of where things stand (as of 2013):

  • High iron stores and higher intakes of heme iron are associated with a higher risk of type 2 diabetes.
  • Heme iron intake is associated with colon cancer, while non-heme iron isn’t.
  • Iron supplementation of < 20 mg/day isn’t associated with colon cancer (studied in women).
  • High serum ferritin levels aren’t associated with cardiovascular disease or increased mortality.
  • Transferrin saturation has been found to be associated with mortality in various ways and at different levels, though it’s not clear why or what can be done about it.

Type 2 Diabetes

There’s evidence that the beta cells of the pancreas, which produce insulin, are particularly susceptible to oxidation from iron due to their weak antioxidant defense mechanisms.

A 2012 meta-analysis of prospective studies found that higher iron stores (6 studies) and higher intakes of heme iron (5 studies) at baseline were strongly associated with a higher risk of type 2 diabetes (Bao, 2012). There was no association for higher intakes of non-heme iron.

A cross-sectional study from the U.S. found lower ferritin levels in lacto-ovo vegetarians (35 µg/l) than in meat-eaters (72 µg/l). The vegetarians also had higher insulin sensitivity. Upon giving phlebotomies to 6 male meat-eaters to reduce their ferritin levels, their insulin sensitivity increased. The authors suggested that the lower ferritin levels could be a reason why vegetarians had greater insulin sensitivity (Hua, 2001).

It’s possible that the lower risk of type 2 diabetes in vegetarians (see Type 2 Diabetes in Vegans), which has been shown to be independent of body mass index, could be partially explained by their lower iron stores.

Colon Cancer

Many studies have looked for an association between iron stores, iron intakes, and colon cancer, and the results have been mixed (Kabat, 2007Kato, 1999; Sempos, 2000; Wurzelmann, 1996).

One study found that high iron intake was associated with colon cancer only when combined with a high-fat diet (Kato, 1999).

The Nurses Health Study and Health Professionals Follow-up Study found no relation between iron intake or iron supplements and risk of colorectal cancer. The highest quintiles of iron intake for men and women were, respectively, >24.6 and >22.7 mg/day with median supplemental iron intake at 10 and 15 mg/day (Zhang, 2011).

The Iowa Women’s Health Study analyzed iron supplement intake, fermentable substrates (fiber plus resistant starch), and colon cancer. They hypothesized that the acidic environment created by fermentable substrates in the colon could interact with the iron supplements, possibly increasing colon cancer. Women taking ≥ 50 mg/day had a significantly increased risk of distal (but not proximal) colon cancer if they also were above the median for fermentable substrates (26 g/day). Supplements of 1–19 mg/day didn’t appear to increase risk (Lee, 2004).

As distinct from total iron or non-heme iron intakes, heme iron intake has been consistently associated with a greater risk of colon cancer. A 2011 meta-analysis of 5 cohort studies found a significant and consistent, but modest, increase in the risk of colon cancer associated with high heme iron intake, with a risk of 1.18 (1.06–1.32) for subjects in the highest category of heme iron compared with the lowest (Bastide, 2011). The researchers said there are plausible mechanisms to suggest it’s the heme iron in red meat causing colon cancer.

Cardiovascular Disease

A meta-analysis of observational studies (Danesh, 1999) found that serum ferritin levels of 200 µg/l were not associated with coronary heart disease compared to levels below 200 µg/l. A more recent systematic review found the association between iron stores and cardiovascular disease to be mixed, with the majority of studies showing no association (Zegrean, 2009).

Cardiovascular disease might not be caused by high storage levels of iron, but rather through repeated bouts of toxic exposure that would not necessarily be evident in serum ferritin levels (Wood, 2004).

The question isn’t settled, and it may be that levels somewhat higher than 200 µg/l are more indicative of damage. It could also be that tissues are protected against oxidative damage by iron when the iron is bound to storage and transfer proteins, such as ferritin.


A 12-year prospective study from the United States National Health and Nutrition Examination Study (NHANES) II examined the relationship between iron intake, transferrin saturation, and mortality among people aged 30–70 years at baseline. High iron intake led to an increased mortality risk when, and only when, it was combined with elevated transferrin saturation. High vs. low iron intake was ≤ 18 mg/day vs. >18 mg/day (Mainous, 2004a).

A prospective report from NHANES II (Sempos, 2000) found no relationship for mortality among white men, white women, or black men when comparing serum ferritin levels of 100-200 µg/l or >200 µg/l with 50-100 µg/l.

In a large sample of U.S. adults, from NHANES III, who were without hemochromatosis and weren’t taking iron supplements, serum ferritin and transferrin saturation weren’t associated with mortality (Menke, 2011).

However, another analysis from NHANES III, limited to adults 50 years and older, found that higher transferrin saturation was associated with lower all-cause and cardiovascular mortality in both men and postmenopausal women.

Men also showed an inverse association between transferrin saturation and cancer mortality (Kim, 2012). High transferrin saturation was >30-35% compared to < 15-18%.

No association with mortality for elevated serum ferritin was found in NHANES III (Kim, 2012; Menke, 2011).

Using data from NHANES I, Mainous et al. (Mainous, 2004b) found transferrin saturation above 55% to be associated with a 60% greater risk of mortality.

Using data from NHANES II, Wells et al. (Wells, 2004) found neither elevated LDL or elevated transferrin saturation (>55%) to be independently associated with mortality, but when combined were strongly associated with mortality.


Last updated August 2019

Position of the Academy of Nutrition and Dietetics: Vegetarian Diets. J Acad Diet Nutr. 2016;116:1970-1980.

Ahmad Fuzi SF, Koller D, Bruggraber S, et al. A 1-h time interval between a meal containing iron and consumption of tea attenuates the inhibitory effects on iron absorption: a controlled trial in a cohort of healthy UK women using a stable iron isotope. Am J Clin Nutr. 2017;106:1413-1421.

Alexander D, Ball MJ, Mann J. Nutrient intake and haematological status of vegetarians and age-sex matched omnivores. Eur J Clin Nutr. 1994 Aµg;48(8):538-46.

Bao W, Rong Y, Rong S, Liu L. Dietary iron intake, body iron stores, and the risk of type 2 diabetes: a systematic review and meta-analysis. BMC Med. 2012 Oct 10;10:119.

Bastide NM, Pierre FH, Corpet DE. Heme iron from meat and risk of colorectal cancer: a meta-analysis and a review of the mechanisms involved. Cancer Prev Res (Phila). 2011 Feb;4(2):177-84.

Bruner AB, Joffe A, Dµggan AK, Casella JF, Brandt J. Randomised study of cognitive effects of iron supplementation in non-anaemic iron-deficient adolescent girls. Lancet. 1996 Oct 12;348(9033):992-6.

Hemochromatosis (Iron Storage Disease). Centers for Disease Control and Prevention. Accessed June 12, 2013.

Collings R, Harvey LJ, Hooper L, Hurst R, Brown TJ, Ansett J, King M, Fairweather-Tait SJ. The absorption of iron from whole diets: a systematic review. Am J Clin Nutr. 2013 May 29.

Cook JD, Dassenko SA, Lynch SR. Assessment of the role of nonheme-iron availability in iron balance. Am J Clin Nutr. 1991 Oct;54(4):717-22.

Danesh J, Appleby P. Coronary heart disease and iron status: meta-analyses of prospective studies. Circulation. 1999 Feb 23;99(7):852-4.

Davey GK, Spencer EA, Appleby PN, Allen NE, Knox KH, Key TJ. EPIC-Oxford: lifestyle characteristics and nutrient intakes in a cohort of 33 883 meat-eaters and 31 546 non meat-eaters in the UK. Public Health Nutr. 2003 May;6(3):259-69.

Disler PB, Lynch SR, Torrance JD, et al. The mechanism of the inhibition of iron absorption by tea. S Afr J Med Sci. 1975;40:109-116. (Abstract)

Gallego-Narbón A, Zapatera B, Vaquero MP. Physiological and Dietary Determinants of Iron Status in Spanish Vegetarians. Nutrients. 2019;11(8).

Garcı́a-Casal M, Layrisse M, Solano L et al. Vitamin A and β-Carotene Can Improve Nonheme Iron Absorption from Rice, Wheat and Corn by Humans. J Nutr. 1998;128(3):646-650. 

García-Casal M, Leets I, Layrisse M. β-Carotene and Inhibitors of Iron Absorption Modify Iron Uptake by Caco-2 Cells. J Nutr.2000;130(1):5-9.

Gautam S, Platel K, Srinivasan K. Higher bioaccessibility of iron and zinc from food grains in the presence of garlic and onion. J Agric Food Chem. 2010 Jul 28;58(14):8426-9.

Gorczyca D, Prescha A, Szeremeta K, Jankowski A. Iron Status and Dietary Iron Intake of Vegetarian Children from Poland. Ann Nutr Metab. 2013 May 25;62(4):291-297. (Epub ahead of print)

Haddad EH, Berk LS, Kettering JD, Hubbard RW, Peters WR. Dietary intake and biochemical, hematologic, and immune status of vegans compared with nonvegetarians. Am J Clin Nutr. 1999 Sep;70(3 Suppl):586S-593S.

Harvey LJ, Armah CN, Dainty JR, Foxall RJ, John Lewis D, Langford NJ, Fairweather-Tait SJ. Impact of menstrual blood loss and diet on iron deficiency among women in the UK. Br J Nutr. 2005 Oct;94(4):557-64.

Henjum S, Groufh-Jacobsen S, Stea TH, Tonheim LE, Almendingen K. Iron Status of Vegans, Vegetarians and Pescatarians in Norway. Biomolecules. 2021 Mar 18;11(3):454. doi: 10.3390/biom11030454. Not cited. Cross-sectional on apparently healthy people including 106 vegans. Vegan serum ferritin didn’t differ from other diet groups.

Hua NW, Stoohs RA, Facchini FS. Low iron status and enhanced insulin sensitivity in lacto-ovo vegetarians. Br J Nutr. 2001 Oct;86(4):515-9.

Hunt JR, Roµghead ZK. Nonheme-iron absorption, fecal ferritin excretion, and blood indexes of iron status in women consuming controlled lactoovovegetarian diets for 8 wk. Am J Clin Nutr. 1999 May;69(5):944-52.

Hurrell RF, Reddy M, Cook JD. Inhibition of non-haem iron absorption in man by polyphenolic-containing beverages. Br J Nutr. 1999 Apr;81(4):289-95. PubMed PMID: 10999016.

Kabat GC, Miller AB, Jain M, Rohan TE. A cohort study of dietary iron and heme iron intake and risk of colorectal cancer in women. Br J Cancer. 2007 Jul 2;97(1):118-22. Epub 2007 Jun 5. Erratum in: Br J Cancer. 2007 Dec 3;97(11):1600.

Kato I, Dnistrian AM, Schwartz M, Toniolo P, Koenig K, Shore RE, Zeleniuch-Jacquotte A, Akhmedkhanov A, Riboli E. Iron intake, body iron stores and colorectal cancer risk in women: a nested case-control study. Int J Cancer. 1999 Mar 1;80(5):693-8.

Kim KS, Son HG, Hong NS, Lee DH. Associations of serum ferritin and transferrin % saturation with all-cause, cancer, and cardiovascular disease mortality: Third National Health and Nutrition Examination Survey follow-up study. J Prev Med Public Health. 2012 May;45(3):196-203.

Layrisse M, Garcia-Casal M, Solano L, Baron, MA. New property of vitamin A and ß-carotene on human iron absorption: Effect on phytate and polyphenols as inhibitors of iron absorption. Arch Latinoam Nutr. 2000;50(3):243-8.

Lee DH, Jacobs Jr DR, Folsom AR. A hypothesis: interaction between supplemental iron intake and fermentation affecting the risk of colon cancer. The Iowa Women’s Health Study. Nutr Cancer. 2004;48(1):1-5.

Mainous AG 3rd, Wells B, Carek PJ, Gill JM, Geesey ME. The mortality risk of elevated serum transferrin saturation and consumption of dietary iron. Ann Fam Med. 2004 Mar-Apr;2(2):139-44.

Mainous AG, Gill JM, Carek PJ. Elevated serum transferrin saturation and mortality. Ann Fam Med 2004;2:133e8.

Menke A, Muntner P, Fernández-Real JM, Guallar E. The association of biomarkers of iron status with mortality in US adults. Nutr Metab Cardiovasc Dis. 2011 Feb 15. (Epub ahead of print)

Mennen L, Hirvonen T, Arnault N, Bertrais S, Galan P, Hercberg S. Consumption of black, green and herbal tea and iron status in French adults. Eur J Clin Nutr. 2007 Oct;61(10):1174-9.

Iron Fact Sheet for Health Professionals. NIH Office of Dietary Supplements. Accessed August 1, 2019.

Obeid R, Geisel J, Schorr H, Hübner U, Herrmann W. The impact of vegetarianism on some haematological parameters. Eur J Haematol. 2002 Nov-Dec;69(5-6):275-9.

Quintaes KD, Farfan JA, Tomazini FM, Morgano MA, de Almeyda Hajisa NM, Neto JT. Mineral Migration and Influence of Meal Preparation in Iron Cookware on the Iron Nutritional Status of Vegetarian Students. Ecology of Food and Nutrition. 2007;46:125-141.

Reddy S, Sanders TA. Haematological studies on pre-menopausal Indian and Caucasian vegetarians compared with Caucasian omnivores. Br J Nutr. 1990 Sep;64(2):331-8.

Rushton DH. Nutritional factors and hair loss. Clin Exp Dermatol. 2002 Jul;27(5):396-404.

Schlesier K, Kühn B, Kiehntopf M, Winnefeld K, Roskos M, Bitsch R, Böhm V. Comparative evaluation of green and black tea consumption on the iron status of omnivorous and vegetarian people. Food Research International. 2012 May;46(2):522-27.

Sempos CT, Looker AC, Gillum RE, McGee DL, Vuong CV, Johnson CL. Serum ferritin and death from all causes and cardiovascular disease: the NHANES II Mortality Study. National Health and Nutrition Examination Study. Ann Epidemiol. 2000 Oct;10(7):441-8.

Seshadri S, Shah A, Bhade S. Haematologic response of anaemic preschool children to ascorbic acid supplementation. Hum Nutr Appl Nutr. 1985 Apr;39(2):151-4.

Sharma DC, Mathur R. Correction of anemia and iron deficiency in vegetarians by administration of ascorbic acid. Indian J Physiol Pharmacol. 1995 Oct;39(4):403-6.

Siegenberg D, Baynes RD, Bothwell TH, Macfarlane BJ, Lamparelli RD, Car NG, MacPhail P, Schmidt U, Tal A, Mayet F. Ascorbic acid prevents the dose-dependent inhibitory effects of polyphenols and phytates on nonheme-iron absorption. Am J Clin Nutr. 1991 Feb;53(2):537-41.

Sobiecki JG, Appleby PN, Bradbury KE, Key TJ. High compliance with dietary recommendations in a cohort of meat eaters, fish eaters, vegetarians, and vegans: results from the European Prospective Investigation into Cancer and Nutrition-Oxford study. Nutr Res. 2016 May;36(5):464-77.

Tong TYN, Key TJ, Gaitskell K, Green TJ, Guo W, Sanders TA, Bradbury KE. Hematological parameters and prevalence of anemia in white and British Indian vegetarians and nonvegetarians in the UK Biobank. Am J Clin Nutr. 2019 Aug 1;110(2):461-472.

Vaucher P, Druais PL, Waldvogel S, Favrat B. Effect of iron supplementation on fatigue in nonanemic menstruating women with low ferritin: a randomized controlled trial. CMAJ. 2012 Aug 7;184(11):1247-54.

Verdon F, Burnand B, Stubi CL, Bonard C, Graff M, Michaud A, Bischoff T, de Vevey M, Studer JP, Herzig L, Chapuis C, Tissot J, Pécoud A, Favrat B. Iron supplementation for unexplained fatigue in non-anaemic women: double blind randomised placebo controlled trial. BMJ. 2003 May 24;326(7399):1124.

Waldmann A, Koschizke JW, Leitzmann C, Hahn A. Dietary iron intake and iron status of German female vegans: results of the German vegan study. Ann Nutr Metab. 2004;48(2):103-8. Epub 2004 Feb 25.

Weikert C, Trefflich I, Menzel J, Obeid R, Longree A, Dierkes J, Meyer K, Herter-Aeberli I, Mai K, Stangl GI, Müller SM, Schwerdtle T, Lampen A, Abraham K. Vitamin and Mineral Status in a Vegan Diet. Dtsch Arztebl Int. 2020 Aug 31;117(35-36):575-582.

Wells AM, Haub MD, Fluckey J, Williams DK, Chernoff R, Campbell WW. Comparisons of vegetarian and beef-containing diets on hematological indexes and iron stores during a period of resistive training in older men. J Am Diet Assoc. 2003;103(5):594-601.

Wells BJ, Mainous AG 3rd, King DE, Gill JM, Carek PJ, Geesey ME. The combined effect of transferrin saturation and low density lipoprotein on mortality. Fam Med. 2004 May;36(5):324-9.

Wood RJ. The iron-heart disease connection: is it dead or just hiding? Ageing Res Rev. 2004 Jul;3(3):355-67.

Worthington-Roberts BS, Breskin MW, Monsen ER. Iron status of premenopausal women in a university community and its relationship to habitual dietary sources of protein. Am J Clin Nutr. 1988 Feb;47(2):275-9.

Wurzelmann JI, Silver A, Schreinemachers DM, Sandler RS, Everson RB. Iron intake and the risk of colorectal cancer. Cancer Epidemiol Biomarkers Prev. 1996 Jul;5(7):503-7.

Zegrean M. Association of body iron stores with development of cardiovascular disease in the adult population: a systematic review of the literature. Can J Cardiovasc Nurs. 2009;19(1):26-32.

Zhang X, Giovannucci EL, Smith-Warner SA, Wu K, Fuchs CS, Pollak M, Willett WC, Ma J. A prospective study of intakes of zinc and heme iron and colorectal cancer risk in men and women. Cancer Causes Control. 2011 Sep 11. (Epub ahead of print)

Leave a comment

Your email address will not be published. Required fields are marked *

Before you comment, please read:

  • If you have a question about whether it's okay to cut supplements in half or combine supplements to achieve the dose we recommend, the answer is “Yes.” Be aware that nutrient recommendations are only estimates—it's not necessary to consume the exact amount we recommend every single day.
  • We aren't able to respond to questions about which brands of supplements to take.
  • We cannot provide personal nutrition advice for specific health conditions. If you need private counseling, here's a list of plant-based dietitians and we especially recommend VeganHealth contributor Taylor Wolfram, MS, RDN, LDN.
  • We urge you to consult with a qualified health professional for answers to your personal questions.

8 thoughts on “Iron Part 2—Research”